翻訳と辞書
Words near each other
・ Reeva Steenkamp
・ Reevan
・ Reeve
・ Reeve (England)
・ Reeve (surname)
・ Reeve Aleutian Airways
・ Reeve baronets
・ Reeve Burgess
・ Reeve Carney
・ Reeve Electric Association Plant
・ Reeve Island
・ Reeve McKay
・ Reeve Oliver
・ Reeve Oliver (album)
・ Reeve Robert Brenner
Reeve tetrahedron
・ Reeve Township
・ Reeve Township, Daviess County, Indiana
・ Reeve Township, Franklin County, Iowa
・ Reeve's Bonebed
・ Reeve's moray
・ Reeve, Wisconsin
・ Reeves
・ Reeves & Co.
・ Reeves (surname)
・ Reeves Airport
・ Reeves AN/MSQ-1 Close Support Control Set
・ Reeves AN/MSQ-35 Bomb Scoring Central
・ Reeves AN/MSQ-51 Aerial Target Control Central
・ Reeves AN/MSQ-77 Bomb Directing Central


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Reeve tetrahedron : ウィキペディア英語版
Reeve tetrahedron
In geometry, the Reeve tetrahedron is a polyhedron, named after John Reeve, in \mathbb^3 with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, r) where r is a positive integer. Each vertex lies on a fundamental lattice point (a point in \mathbb^3). No other fundamental lattice points lie on the surface or in the interior of the tetrahedron. In 1957 Reeve used this tetrahedron as a counterexample to show that there is no simple equivalent of Pick's theorem in \mathbb^3 or higher-dimensional spaces.〔J. E. Reeve, "On the Volume of Lattice Polyhedra", ''Proceedings of the London Mathematical Society'', s3–7(1):378–395〕 This is seen by noticing that Reeve tetrahedra have the same number of interior and boundary points for any value of r, but different volumes.
The Ehrhart polynomial of the Reeve tetrahedron \mathcal_r of height r is
:L(\mathcal_r, t) = \fract^3 + t^2 + \left(2 - \frac\right)t + 1.
Thus, for r \ge 13, the Ehrhart polynomial of \mathcal_r has a negative coefficient.
== Notes ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Reeve tetrahedron」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.