翻訳と辞書 |
Reeve tetrahedron : ウィキペディア英語版 | Reeve tetrahedron In geometry, the Reeve tetrahedron is a polyhedron, named after John Reeve, in with vertices at , , , and where is a positive integer. Each vertex lies on a fundamental lattice point (a point in ). No other fundamental lattice points lie on the surface or in the interior of the tetrahedron. In 1957 Reeve used this tetrahedron as a counterexample to show that there is no simple equivalent of Pick's theorem in or higher-dimensional spaces.〔J. E. Reeve, "On the Volume of Lattice Polyhedra", ''Proceedings of the London Mathematical Society'', s3–7(1):378–395〕 This is seen by noticing that Reeve tetrahedra have the same number of interior and boundary points for any value of , but different volumes. The Ehrhart polynomial of the Reeve tetrahedron of height is : Thus, for , the Ehrhart polynomial of has a negative coefficient. == Notes ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Reeve tetrahedron」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|